If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=19x-4.9x^2-1.7
We move all terms to the left:
0-(19x-4.9x^2-1.7)=0
We add all the numbers together, and all the variables
-(19x-4.9x^2-1.7)=0
We get rid of parentheses
4.9x^2-19x+1.7=0
a = 4.9; b = -19; c = +1.7;
Δ = b2-4ac
Δ = -192-4·4.9·1.7
Δ = 327.68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{327.68}}{2*4.9}=\frac{19-\sqrt{327.68}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{327.68}}{2*4.9}=\frac{19+\sqrt{327.68}}{9.8} $
| 4|x|+5=45 | | 6=-2+y/4 | | 5-7u=-9u−7 | | 5−7u=-9u−7 | | 3x−4=3x+9 | | 2.588=x/2-x | | -8+4h=3h | | 2(x+7)=5x-1 | | 6j-10=5j | | -9g-9=-8g | | -8g=-9g−9 | | 7k-2=5k | | -3n+2=-4+5 | | -20x^2-13x+15=0 | | 7k−2=5k | | -5+5u=4u | | 4y2–45y+11=0 | | 2(y+10)-7=7 | | 4y^2–45y+11=0 | | w+7/3=4 | | k-7/2=1 | | a=18+0.04/0.22 | | 3(s-6)-7=2 | | 3(s−6)−7=2 | | 0.18a+0.4(10-a)=0.2(10 | | 3p^2-p-5=0 | | 11=2(w+1)−5 | | 5^(2x-7)=11 | | 5^2x-7=11 | | -2x98=2 | | 12x-3=-41 | | -12+4c=6c-19 |